Confidence Sets for Persistence Diagrams
نویسندگان
چکیده
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features as one varies a tuning parameter. Features with short lifetimes are informally considered to be “topological noise,” and those with a long lifetime are considered to be “topological signal.” In this paper, we bring some statistical ideas to persistent homology. In particular, we derive confidence sets that allow us to separate topological signal from topological noise.
منابع مشابه
On the Bootstrap for Persistence Diagrams and Landscapes
Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence dia...
متن کاملMeans and medians of sets of persistence diagrams
The persistence diagram is the fundamental object in topological data analysis. It inherits the stochastic variability of the data we use as input. As such we need to understand how to perform statistics on the space of persistence diagrams. This paper looks at the space of persistence diagrams under a variety of different metrics which are analogous to L metrics on the space of functions. Usin...
متن کاملPersistence Diagrams and the Heat Equation Homotopy
Persistence homology is a tool used to measure topological features that are present in data sets and functions. Persistence pairs births and deaths of these features as we iterate through the sublevel sets of the data or function of interest. I am concerned with using persistence to characterize the difference between two functions f, g : M ->R, where M is a topological space. Furthermore, I f...
متن کاملCONFIDENCE SETS FOR PERSISTENCE DIAGRAMS By Brittany
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features as one varies a tuning parameter. Features with short lifetimes are informally considered to be “topological noise,” and those with a long lifetime are considered to be “topological signal.” In this paper, we bring some statis...
متن کاملRiemannian Manifold Kernel for Persistence Diagrams
Algebraic topology methods have recently played an important role for statistical analysis with complicated geometric structured data. Among them, persistent homology is a well-known tool to extract robust topological features, and outputs as persistence diagrams. Unfortunately, persistence diagrams are point multi-sets which can not be used in machine learning algorithms for vector data. To de...
متن کامل